Die allgemein steigende Komplexität technischer Systeme macht sich auch in eingebetteten Systemen bemerkbar. Außerdem schrumpfen die Strukturgrößen der eingesetzten Komponenten, was wiederum die Auftrittswahrscheinlichkeit verschiedener Effekte erhöht, die zu Fehlern und Ausfällen dieser Komponenten und damit der Gesamtsysteme führen können. Da in vielen Anwendungsbereichen ferner Sicherheitsanforderungen eingehalten werden müssen, sind zur Gewährleistung der Zuverlässigkeit flexible Redundanzkonzepte nötig. Ein Forschungsgebiet, das sich mit Methoden zur Beherrschung der Systemkomplexität befasst, ist das Organic Computing. In dessen Rahmen werden Konzepte erforscht, um in natürlichen Systemen beobachtbare Eigenschaften und Organisationsprinzipien auf technische Systeme zu übertragen. Hierbei sind insbesondere sogenannte Selbst-X-Eigenschaften wie Selbstorganisation, -konfiguration und -heilung von Bedeutung. Eine konkrete Ausprägung dieses Forschungszweigs ist das künstliche Hormonsystem (artificial hormone system, AHS). Hierbei handelt es sich um eine Middleware für verteilte Systeme, welche es ermöglicht, die Tasks des Systems selbstständig auf seine Prozessorelemente (PEs) zu verteilen und insbesondere Ausfälle einzelner Tasks oder ganzer PEs automatisch zu kompensieren, indem die betroffenen Tasks auf andere PEs migriert werden. Hierbei existiert keine zentrale Instanz, welche die Taskverteilung steuert und somit einen Single-Point-of-Failure darstellen könnte. Entsprechend kann das AHS aufgrund seiner automatischen (Re)konfiguration der Tasks als selbstkonfigurierend und selbstheilend bezeichnet werden, was insbesondere die Zuverlässigkeit des realisierten Systems erhöht. Die Dauer der Selbstkonfiguration und Selbstheilung unterliegt zudem harten Zeitschranken, was den Einsatz des AHS auch in Echtzeitsystemen erlaubt. Das AHS nimmt jedoch an, dass alle Tasks gleichwertig sind, zudem werden alle Tasks beim Systemstart in einer zufälligen Reihenfolge auf die einzelnen PEs verteilt. Häufig sind die in einem System auszuführenden Tasks jedoch für das Gesamtsystem von unterschiedlicher Wichtigkeit oder müssen gar in einer bestimmten Reihenfolge gestartet werden. Um den genannten Eigenschaften Rechnung zu tragen, liefert diese Dissertation gegenüber dem aktuellen Stand der Forschung folgende Beiträge: Zunächst werden die bisher bekannten Zeitschranken des AHS genauer betrachtet und verfeinert. Anschließend wird das AHS durch die Einführung von Zuteilungsprioritäten erweitert: Mithilfe dieser Prioritäten kann eine Reihenfolge definiert werden, in welcher die Tasks beim Start des Systems auf die PEs verteilt beziehungsweise in welcher betroffene Tasks nach einem Ausfall auf andere PEs migriert werden. Die Zeitschranken dieser AHS-Erweiterung werden im Detail analysiert. Durch die Priorisierung von Tasks ist es möglich, implizit Teilmengen von Tasks zu definieren, die ausgeführt werden sollen, falls die Rechenkapazitäten des Systems nach einer bestimmten Anzahl von PE-Ausfällen nicht mehr ausreichen, um alle Tasks auszuführen: Die im Rahmen dieser Dissertation entwickelten Erweiterungen erlauben es in solchen Überlastsituationen, das System automatisch und kontrolliert zu degradieren, sodass die wichtigsten Systemfunktionalitäten lauffähig bleiben. Überlastsituationen werden daher im Detail betrachtet und analysiert. In solchen müssen gegebenenfalls Tasks niedriger Priorität gestoppt werden, um auf den funktionsfähig verbleibenden PEs hinreichend viel Rechenkapazität zu schaffen, um Tasks höherer Priorität ausführen zu können und das System so in einen wohldefinierten Zustand zu überführen. Die Entscheidung, in welcher Reihenfolge hierbei Tasks gestoppt werden, wird von einer Task-Dropping-Strategie getroffen, die entsprechend einen großen Einfluss auf die Dauer einer solchen Selbstheilung nimmt. Es werden zwei verschiedene Task-Dropping-Strategien entwickelt und im Detail analysiert: die naive Task-Dropping-Strategie, welche alle niedrigprioren Tasks auf einmal stoppt, sowie das Eager Task Dropping, das in mehreren Phasen jeweils höchstens eine Task pro PE stoppt. Im Vergleich zeigt sich, dass von letzterem fast immer weniger Tasks gestoppt werden als von der naiven Strategie, was einen deutlich schnelleren Abschluss der Selbstheilung ermöglicht. Lediglich in wenigen Sonderfällen ist die naive Strategie überlegen. Es wird detailliert gezeigt, dass die entwickelte AHS-Erweiterung auch in Überlastsituationen die Einhaltung bestimmter harter Zeitschranken garantieren kann, was den Einsatz des erweiterten AHS in Echtzeitsystemen erlaubt. Alle theoretisch hergeleiteten Zeitschranken werden durch umfassende Evaluationen vollumfänglich bestätigt. Abschließend wird das erweiterte, prioritätsbasierten AHS mit verschiedenen verwandten Konzepten verglichen, um dessen Vorteile gegenüber dem Stand der Forschung herauszuarbeiten sowie zukünftige vertiefende Forschung zu motivieren.