2023
DOI: 10.3390/rs15143544
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Oriented Enhancement Branch and Context-Aware Module for Few-Shot Oriented Object Detection in Remote Sensing Images

Abstract: For oriented object detection, the existing CNN-based methods typically rely on a substantial and diverse dataset, which can be expensive to acquire and demonstrate limited capacity for generalization when faced with new categories that lack annotated samples. In this case, we propose MOCA-Net, a few-shot oriented object detection method with a multi-oriented enhancement branch and context-aware module, utilizing a limited number of annotated samples from novel categories for training. Especially, our method g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 45 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?