2024
DOI: 10.36001/ijphm.2024.v15i1.3829
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Output Deep Learning Model for Fault Diagnosis Based on Time-Series Data

Ahmed Al-Ajeli,
Eman S. Alshamery

Abstract: In this work, a method for fault diagnosis and localization is proposed. This method adopts the long short-term memory (LSTM) neural network to detect, isolate and determine the component of the system in which a fault has occurred. Unlike the traditional methods used for fault diagnosis, which first extract features from the raw data and then use a classifier in order to diagnose the fault; the LSTM-based method works directly on raw data and builds the classifier. This can be accomplished by training the neu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?