InGaZnO (IGZO) is currently the most prominent oxide semiconductor complement to low-temperature polysilicon for thin-film transistor (TFT) applications in flat panel displays. However, the compromised transport performance and bias stress instability are critical issues inhibiting its application in ultrahigh-resolution optoelectronic displays. Here, we report the fabrication of graded channel junctionless IGZO:O|N TFTs with both high transporting properties and good bias stress stability by systematic manipulation of oxygen vacancy (V O ) defects through sequential O antidoping and O/N codoping of the continuous IGZO framework. The transporting properties and bias stress stability of the graded channel IGZO:O|N TFTs, which exhibited high field-effect mobilities close to 100 cm 2 V −1 s −1 , negligible performance degradations, and trivial threshold voltage shifts against gate bias stress and photobias stress, are simultaneously improved compared to those of the controlled single-channel uniformly doped IGZO:O TFTs, IGZO:N TFTs, and double-channel barrier-confined IGZO:O/IGZO:N TFTs. The synergistic improvements are attributed to the sequential mobility and stability enhancement effects of O antidoping and O/N codoping where triple saturation currents are induced by O antidoping of the front-channel regime while the trapped electrons and photoexcited holes in the back-channel bulk and surface regions are suppressed by O/N codoping. More importantly, fast accumulation and barrier-free full depletion are rationally realized by eliminating the junction interface within the graded channel layer. Our observation identifies that graded channel doping could be a powerful way to synergistically boost up the transport performance and bias stress stability of oxide TFTs for new-generation ultrahigh-definition display applications.