The increasing demand for sustainable development and energy efficiency underscores the importance of optimizing motors in driving the upgrade of energy structures. This paper studies a data-driven approach for the multi-objective optimization of motors designed for scenarios involving multiple variables, objectives, and limited sample sizes and validates its efficacy. Initially, sensitivity analysis is employed to identify potentially influential variables, thus selecting key design parameters. Subsequently, Latin hypercube sampling (LHS) is utilized to select experimental points, ensuring the coverage of the modeled test points across the experimental space to enhance fitting accuracy. Finally, the support vector regression (SVR) algorithm is employed to fit the objective function, in conjunction with multi-objective particle swarm optimization (MOPSO) for solution derivation. The presented method is used to optimize the efficiency, average output torque, and induced electromotive force harmonic distortion rate of a permanent magnet synchronous motor (PMSM). The results show an improvement of approximately 6.80% in average output torque and a significant decrease of about 59.5% in the induced electromotive force harmonic distortion rate, with minimal impact on efficiency. This study offers a pathway for enhancing motor performance, holding practical significance.