Elastic wave propagation in a three-layered plate with high-contrast mechanical and geometric properties of the layers is analysed. Four specific types of contrast arising in engineering practice, including the design of stiff and lightweight structures, laminated glass, photovoltaic panels, and electrostatic precipitators in gas filters, are considered. For all of them the cut-off frequency of the first harmonic is close to zero. Two-mode asymptotic polynomial expansions of the Rayleigh-Lamb dispersion relation approximating both the fundamental bending wave and the first harmonic, are derived. It is established that these can be either uniform or composite ones, valid only over non-overlapping vicinities of zero and the lowest cut-off frequencies. The partial differential equations of motion associated with two-mode shortened dispersion relations are also presented.