The paper presents the review of works on modeling the interaction of photosynthetic proteins using the multiparticle Brownian dynamics method developed at the Department of Biophysics, Biological Faculty, Lomonosov Moscow State University. The method describes the displacement of individual macromolecules – mobile electron carriers, and their electrostatic interactions between each other and with pigment-protein complexes embedded in photosynthetic membrane. Three-dimensional models of the protein molecules were constructed on the basis of the data from the Protein Data Bank. We applied the Brownian methods coupled to molecular dynamic simulations to reveal the role of electrostatic interactions and conformational motions in the transfer of an electron from the cytochrome complex Cyt b6f) membrane we developed the model which combines events of proteins Pc diffusion along the thylakoid membrane, electrostatic interactions of Pc with the membrane charges, formation of Pc super-complexes with multienzyme complexes of Photosystem I and to the molecule of the mobile carrier plastocyanin (Pc) in plants, green algae and cyanic bacteria. Taking into account the interior of photosynthetic membrane we developed the model which combines events of proteins Pc diffusion along the thylakoid membrane, electrostatic interactions of Pc with the membrane charges, formation of Pc super-complexes with multienzyme complexes of Photosystem I and Cyt b6f, embedded in photosynthetic membrane, electron transfer and complex dissociation. Multiparticle Brownian simulation method can be used to consider the processes of protein interactions in subcellular systems in order to clarify the role of individual stages and the biophysical mechanisms of these processes.