2022
DOI: 10.48550/arxiv.2210.13529
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Multi-Person 3D Pose and Shape Estimation via Inverse Kinematics and Refinement

Abstract: Estimating 3D poses and shapes in the form of meshes from monocular RGB images is challenging. Obviously, it is more difficult than estimating 3D poses only in the form of skeletons or heatmaps. When interacting persons are involved, the 3D mesh reconstruction becomes more challenging due to the ambiguity introduced by person-to-person occlusions. To tackle the challenges, we propose a coarse-to-fine pipeline that benefits from 1) inverse kinematics from the occlusion-robust 3D skeleton estimation and 2) Trans… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 60 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?