Developing highly efficient methane (CH4) hydrate storage methods and understanding the hydrate dissociation kinetics can contribute to advancing CH4 gas storage and transport. The effects of tetrabutylammonium bromide (TBAB) (a thermodynamic promoter) addition on the kinetics of CH4 hydrate were evaluated on the microscopic scale using synchrotron x-ray computed tomography (CT) and powder x-ray diffraction. Microscopic observations showed that a 5 wt. % TBAB solution facilitated the nucleation of CH4 hydrate owing to the initial growth of TBAB semi-clathrate hydrate particles. The CH4 hydrate crystals in the CH4 + TBAB hydrate sample were sponge-like with many internal pores and exhibited slightly enhanced self-preservation compared to the pure CH4 hydrate, both in the bulk and after pulverization to a fine powder. This study demonstrates the feasibility of controlling the rate of CH4 hydrate formation and preservation by using aqueous TBAB solutions in CH4 hydrate formation.