This paper describes the analysis, design and characterization of a polarimetric receiver developed for covering the 35 to 47 GHz frequency band in the new instrument aimed at completing the ground-based Q-U-I Joint Tenerife Experiment. This experiment is designed to measure polarization in the Cosmic Microwave Background. The described high frequency instrument is a HEMT-based array composed of 29 pixels. A thorough analysis of the behaviour of the proposed receiver, based on electronic phase switching, is presented for a noise-like linearly polarized input signal, obtaining simultaneously I, Q and U Stokes parameters of the input signal. Wideband subsystems are designed, assembled and characterized for the polarimeter. Their performances are described showing appropriate results within the 35-to-47 GHz frequency band. Functionality tests are performed at room and cryogenic temperatures with adequate results for both temperature conditions, which validate the receiver concept and performance.