2020
DOI: 10.1109/access.2020.2993994
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Point Near-Field RF Sensing of Blood Pressures and Heartbeat Dynamics

Abstract: Systolic and diastolic blood pressure estimation using arm-cuff monitors is one of the most common cardiovascular evaluation criteria in healthcare today, however these measures lack critical heartbeat and pressure dynamics. Pulse-transit time can be used as an alternative for arm-cuff monitors, but gives only one parameter for two pressure quantities. Ultrasound, computed tomography scan, and magnetic resonance imaging can retrieve geometrical features of the heart, but cannot directly estimate vascular press… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
6
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 23 publications
(6 citation statements)
references
References 38 publications
0
6
0
Order By: Relevance
“…Table 5 presents the list of selected articles, containing a numerical identification, reference, authors' countries, databases, year of publication, and a short description of the research work. India IEEE Xplore Noise detection on sign Ayari et al [54] Tunisia/USA IEEE Xplore Mathematical component analysis algorithm for separation of cardiac sounds from pulmonary sounds Udawatta et al [55] Sri Lanka IEEE Xplore Digital stethoscope to amplify signal Malek et al [56] Malaysia IEEE Xplore Digital stethoscope in Arduino, ZigBee and signal processing by MatLab Singh and Singh [36] India IEEE Xplore Convolutional Neural Networks Das et al [57] India IEEE Xplore Algorithm to remove signal noise, regardless of sensor quality Gjoreski et al [58] Slovenia/Macedônia IEEE Xplore Machine Learning Pereira et al [59] Portugal/Brasil IEEE Xplore Machine Learning Banerjee et al [60] India IEEE Xplore Convolutional Neural Networks Suhn et al [61] Germany IEEE Xplore Carotid auscultation equipment Gautam and kumar [62] India IEEE Xplore Multilayer Multilayer Perceptron Artificial Neural Network Zhang et al [63] Singapore IEEE Xplore Heart rate estimation algorithm Doshi et al [64] India IEEE Xplore Neural Network Prasad et al [65] Switzerland IEEE Xplore Processing in the time domain employing a low-pass filter Rao et al [66] Switzerland IEEE Xplore Neural Network Hui et al [67] USA IEEE Xplore Investigates transient movement and heartbeat Humayun et al [25] Bangladesh/USA IEEE Xplore Use of convolutional neural network to detect abnormality of cardiac sound with stethoscope Shuvo et al [68] Bangladesh/Saudi Arabia/Yemen IEEE Xplore Convolutional Neural Network for automatic detection of different classes of cardiovascular diseases, direct by phonocardiography signal Tiwari et al [27] India/Saudi Arabia IEEE Xplore Hybrid model, with signal processing using the constant Q transform and Convolutional Neural Network Du et al [69] China JMIR Big Data and Machine Learning Chowdhury et al [26] Qatar/Malaysia PubMed Central Processing and classification using MATLAB Leng et al [30] Singapore PubMed Central Machine Learning Techniques Elgendi et al [70] Canada/India PubMed Central Developed a Wavelet-based algorithm SwarupandMakaryus [71] USA PubMed Central Use of digital stethoscope and mobile computing Raza et al…”
Section: Criteria and Filtering Resultsmentioning
confidence: 99%
“…Table 5 presents the list of selected articles, containing a numerical identification, reference, authors' countries, databases, year of publication, and a short description of the research work. India IEEE Xplore Noise detection on sign Ayari et al [54] Tunisia/USA IEEE Xplore Mathematical component analysis algorithm for separation of cardiac sounds from pulmonary sounds Udawatta et al [55] Sri Lanka IEEE Xplore Digital stethoscope to amplify signal Malek et al [56] Malaysia IEEE Xplore Digital stethoscope in Arduino, ZigBee and signal processing by MatLab Singh and Singh [36] India IEEE Xplore Convolutional Neural Networks Das et al [57] India IEEE Xplore Algorithm to remove signal noise, regardless of sensor quality Gjoreski et al [58] Slovenia/Macedônia IEEE Xplore Machine Learning Pereira et al [59] Portugal/Brasil IEEE Xplore Machine Learning Banerjee et al [60] India IEEE Xplore Convolutional Neural Networks Suhn et al [61] Germany IEEE Xplore Carotid auscultation equipment Gautam and kumar [62] India IEEE Xplore Multilayer Multilayer Perceptron Artificial Neural Network Zhang et al [63] Singapore IEEE Xplore Heart rate estimation algorithm Doshi et al [64] India IEEE Xplore Neural Network Prasad et al [65] Switzerland IEEE Xplore Processing in the time domain employing a low-pass filter Rao et al [66] Switzerland IEEE Xplore Neural Network Hui et al [67] USA IEEE Xplore Investigates transient movement and heartbeat Humayun et al [25] Bangladesh/USA IEEE Xplore Use of convolutional neural network to detect abnormality of cardiac sound with stethoscope Shuvo et al [68] Bangladesh/Saudi Arabia/Yemen IEEE Xplore Convolutional Neural Network for automatic detection of different classes of cardiovascular diseases, direct by phonocardiography signal Tiwari et al [27] India/Saudi Arabia IEEE Xplore Hybrid model, with signal processing using the constant Q transform and Convolutional Neural Network Du et al [69] China JMIR Big Data and Machine Learning Chowdhury et al [26] Qatar/Malaysia PubMed Central Processing and classification using MATLAB Leng et al [30] Singapore PubMed Central Machine Learning Techniques Elgendi et al [70] Canada/India PubMed Central Developed a Wavelet-based algorithm SwarupandMakaryus [71] USA PubMed Central Use of digital stethoscope and mobile computing Raza et al…”
Section: Criteria and Filtering Resultsmentioning
confidence: 99%
“…Table 5 presents the list of selected articles, containing a numerical identification, reference, authors' countries, databases, year of publication, and a short description of the research work. India IEEE Xplore Noise detection on sign Ayari et al [54] Tunisia/USA IEEE Xplore Mathematical component analysis algorithm for separation of cardiac sounds from pulmonary sounds Udawatta et al [55] Sri Lanka IEEE Xplore Digital stethoscope to amplify signal Malek et al [56] Malaysia IEEE Xplore Digital stethoscope in Arduino, ZigBee and signal processing by MatLab Singh and Singh [36] India IEEE Xplore Convolutional Neural Networks Das et al [57] India IEEE Xplore Algorithm to remove signal noise, regardless of sensor quality Gjoreski et al [58] Slovenia/Macedônia IEEE Xplore Machine Learning Pereira et al [59] Portugal/Brasil IEEE Xplore Machine Learning Banerjee et al [60] India IEEE Xplore Convolutional Neural Networks Suhn et al [61] Germany IEEE Xplore Carotid auscultation equipment Gautam and kumar [62] India IEEE Xplore Multilayer Multilayer Perceptron Artificial Neural Network Zhang et al [63] Singapore IEEE Xplore Heart rate estimation algorithm Doshi et al [64] India IEEE Xplore Neural Network Prasad et al [65] Switzerland IEEE Xplore Processing in the time domain employing a low-pass filter Rao et al [66] Switzerland IEEE Xplore Neural Network Hui et al [67] USA IEEE Xplore Investigates transient movement and heartbeat Humayun et al [25] Bangladesh/USA IEEE Xplore Use of convolutional neural network to detect abnormality of cardiac sound with stethoscope Shuvo et al [68] Bangladesh/Saudi Arabia/Yemen IEEE Xplore Convolutional Neural Network for automatic detection of different classes of cardiovascular diseases, direct by phonocardiography signal Tiwari et al [27] India/Saudi Arabia IEEE Xplore Hybrid model, with signal processing using the constant Q transform and Convolutional Neural Network Du et al [69] China JMIR Big Data and Machine Learning Chowdhury et al [26] Qatar/Malaysia PubMed Central Processing and classification using MATLAB Leng et al [30] Singapore PubMed Central Machine Learning Techniques Elgendi et al [70] Canada/India PubMed Central Developed a Wavelet-based algorithm SwarupandMakaryus [71] USA PubMed Central Use of digital stethoscope and mobile computing Raza et al…”
Section: Criteria and Filtering Resultsmentioning
confidence: 99%
“…An alternative microwave sensing approach was near-field coherent sensing, which can retrieve the heart sound through layers of clothing using ultrahigh frequency (UHF) band (300MHz -3 GHz) signals [81]. This enables multi-point near-field assessment of motion and pressure at different parts of the heart [82]. Furthermore, the Hilbert-Huang frequency-time transform can be used to derive the central blood pressure from the vascular vibration characteristics as continuous transients.…”
Section: Blood/pulse Pressure Monitoringmentioning
confidence: 99%