The perceptual quality of digital images is often deteriorated during storage, compression, and transmission. The most reliable way of assessing image quality is to ask people to provide their opinions on a number of test images. However, this is an expensive and time-consuming process which cannot be applied in real-time systems. In this study, a novel no-reference image quality assessment method is proposed. The introduced method uses a set of novel quality-aware features which globally characterizes the statistics of a given test image, such as extended local fractal dimension distribution feature, extended first digit distribution features using different domains, Bilaplacian features, image moments, and a wide variety of perceptual features. Experimental results are demonstrated on five publicly available benchmark image quality assessment databases: CSIQ, MDID, KADID-10k, LIVE In the Wild, and KonIQ-10k.