Multi-resolution Twinned Residual Auto-Encoders (MR-TRAE)—A Novel DL Model for Image Multi-resolution
Alireza Momenzadeh,
Enzo Baccarelli,
Michele Scarpiniti
et al.
Abstract:In this paper, we design and evaluate the performance of the Multi-resolution Twinned Residual Auto-Encoders (MR-TRAE) model, a deep learning (DL)-based architecture specifically designed for achieving multi-resolution super-resolved images from low-resolution (LR) inputs at various scaling factors. For this purpose, we expand on the recently introduced Twinned Residual Auto-Encoders (TRAE) paradigm for single-image super-resolution (SISR) to extend it to the multi-resolution (MR) domain. The main contribution… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.