Abstract:Diabetes is the leading cause of chronic kidney disease. Prognostic biomarkers reflective of underlying molecular mechanisms are critically needed for effective management of diabetic kidney disease (DKD). In the Clinical Phenotyping and Resource Biobank study, an unbiased, machine learning approach identified a three-marker panel from plasma proteomics which, when added to standard clinical parameters, improved the prediction of outcome of end-stage kidney disease (ESKD) or 40% decline in baseline glomerular … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.