This paper introduces a novel semi-supervised tri-training classification algorithm based on regularized local discriminant embedding (RLDE) for hyperspectral imagery. In this algorithm, the RLDE method is used for optimal feature information extraction, to solve the problems of singular values and over-fitting, which are the main problems in the local discriminant embedding (LDE) and local Fisher discriminant analysis (LFDA) methods. An active learning method is then used to select the most useful and informative samples from the candidate set. In the experiments undertaken in this study, the three base classifiers were multinomial logistic regression (MLR), k-nearest neighbor (KNN), and random forest (RF). To confirm the effectiveness of the proposed RLDE method, experiments were conducted on two real hyperspectral datasets (Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS)), and the proposed RLDE tri-training algorithm was compared with its counterparts of tri-training alone, LDE, and LFDA. The experiments confirmed that the proposed approach can effectively improve the classification accuracy for hyperspectral imagery.