Abstract:In realistic compressed sensing (CS) scenarios, the obtained measurements usually have to be quantized to a finite number of bits before transmission and/or storage, thus posing a challenge in recovery, especially for extremely coarse quantization such as 1-bit sign measurements. Recently Meng & Kabashima (2023) proposed an efficient quantized compressed sensing algorithm called QCS-SGM using the score-based generative models as an implicit prior. Thanks to the power of score-based generative models in captur… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.