Multi-scale feature aggregation and fusion network with self-supervised multi-level perceptual loss for textures preserving low-dose CT denoising
Yuanke Zhang,
Zhaocui Wan,
Dong Wang
et al.
Abstract:Objective. The textures and detailed structures in computed tomography (CT) images are highly desirable for clinical diagnosis. This study aims to expand the current body of work on textures and details preserving convolutional neural networks for low-dose CT (LDCT) image denoising task. Approach. This study proposed a novel Multi-scale Feature Aggregation and Fusion network (MFAF-net) for LDCT image denoising. Specifically, we proposed a Multi-scale Residual Feature Aggregation Module (MRFAM) to characterize … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.