Monitoring the body condition of dairy cows is essential for ensuring their health and productivity, but traditional BCS methods—relying on visual or tactile assessments by skilled personnel—are subjective, labor-intensive, and impractical for large-scale farms. To overcome these limitations, we present BCS-YOLO, a lightweight and automated BCS framework built on YOLOv8, which enables consistent, accurate scoring under complex conditions with minimal computational resources. BCS-YOLO integrates the Star-EMA module and the Star Shared Lightweight Detection Head (SSLDH) to enhance the detection accuracy and reduce model complexity. The Star-EMA module employs multi-scale attention mechanisms that balance spatial and semantic features, optimizing feature representation for cow hindquarters in cluttered farm environments. SSLDH further simplifies the detection head, making BCS-YOLO viable for deployment in resource-limited scenarios. Additionally, channel-based knowledge distillation generates soft probability maps focusing on key body regions, facilitating effective knowledge transfer and enhancing performance. The results on a public cow image dataset show that BCS-YOLO reduces the model size by 33% and improves the mean average precision (mAP) by 9.4%. These advances make BCS-YOLO a robust, non-invasive tool for consistent and accurate BCS in large-scale farming, supporting sustainable livestock management, reducing labor costs, enhancing animal welfare, and boosting productivity.