2012
DOI: 10.2174/1874120701206010056
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs

Abstract: Abstract:In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI) data. The technique uses a trained support vector machine (SVM) to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions mainly based on the textural features with aid of the other features. The classification is done on each of the axial, sagittal and coronal sectional brain view independently and the resultant … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2014
2014
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 14 publications
(2 citation statements)
references
References 34 publications
0
2
0
Order By: Relevance
“…Bassem et al [135] proposed the automatic segmentation of MS by using T1 and T2 images. The preprocessing step consists of intensity correction and registration of MRI.…”
Section: Supervised Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Bassem et al [135] proposed the automatic segmentation of MS by using T1 and T2 images. The preprocessing step consists of intensity correction and registration of MRI.…”
Section: Supervised Methodsmentioning
confidence: 99%
“…Khayati et al [25] 2008 Bayesian FLAIR MSL Harmouche et al [98] 2015 MRF T1, T2, PD, FLAIR T1-HL, T2-HL Shiee et al [97] 2010 FCM T1, T2, PD WHL Harmouche et al [87] 2006 Bayesian + MRF T2-w, PD-w T2 HL Bricq et al [88] 2008 HMM + TLE T1-w, FLAIR MSL Prastawa et al [90] 2008 PDF + MCD T1-w, T2-w, FLAIR MSL At-Ali et al [91] 2005 TLE T1-w, T2-w PD-w T1-HL, T2-HL Gao et al [94] 2013 EnM T1-w, T2-w, FLAIR WML Gong et al [101] 2015 EnM FLAIR MSL Tomas-Fernandez et al [103] 2015 GMM T1, T2, FLAIR MSL Elliott et al [104] 2013 Bayesian + RF FLAIR MSL Gao et al [105] 2014 EnM + BFE T1-w, T2-w, FLAIR MSL Zangeneh et al [113] 2016 GMM + ANN T1-w, T2-w, FLAIR MSL Zhao et al [118] 2017 EnM T1-w, FLAIR MSL Supervised Roy et al [4] 2013 SVM T1-w, T2-w, FLAIR MSL Deshpande et al [128] 2015 ADL T1-w MPRAGE, T2-w, PD, FLAIR MSL, WM, GM Tissues Zhang et al [130] 2007 ANN + KNN T2-w MSL, WM Tissues Cabezas et al [131] 2013 Gentleboost Algorithm PD-w, T2-w HL Cabezas et al [132] 2014 Gentleboost Algorithm T1-w, T2-w, PD-w, FLAIR MSL Guizard et al [146] 2015 RMNMS T1-w, T2-w, FLAIR MSL Jesson et al [133] 2015 MRF + RF T1, T2, FLAIR GML Kuwazuru et al [134] 2012 ANN + levelSet method T1, T2, FLAIR MSL Abdullah et al [135] 2012 SVM T1, T2 MSL Khastavaneh et al [137] 2015 MTANN + FIS T1-w, T2-w, FLAIR HL Veronese et al [138] 2014 SVM DIR GML…”
Section: Statisticalmentioning
confidence: 99%