BackgroundPulmonary vein isolation (PVI), a cornerstone for catheter ablation of atrial fibrillation (AF), remains a complex and time-consuming procedure. Present study introduces a novel, circular-irrigated, deca-channel mapping and ablation catheter (CIDMA), describes the in vitro test results on feasibility, safety, and acute efficacy of the CIDMA catheter.MethodsAn assembled CIDMA catheter was subjected to a number of in vitro tests. With this catheter, ablation procedures were first performed in a pig’s myocardial strips in vitro to determine the effects in unipolar or bipolar configuration.ResultsThree catheters were assembled. The adjustable circular diameter was changed from initial state of 32.41 ± 0.61 mm into controlled state of 28.61 ± 0.47 mm (P = 0.013). In the plastic model, the push-ability, torque-ability, and kink resistance of CIDMA catheter were shown to be satisfactory.In vitro, our findings showed that ablation could produce obvious ablation lesions, and unipolar ablation (at length, width and depth of 5.0 ± 1.3, 4.6 ± 0.7, and 4.2 ± 0.6 mm, respectively) was more effective than bipolar (at length, width and depth of 2.8 ± 0.2, 4.2 ± 0.5, and 2.3 ± 0.4 mm, respectively) (P < 0.01).ConclusionsIn vitro, our preliminary data suggest that the CIDMA catheter produced optimal ablation lesions, especially in the unipolar ablation mode. Future in vivo animal and clinical studies are warranted to test the efficacy of this catheter in real-world scenario.