“…It can improve the prediction because it makes use of complementary information from different sensors (Mouazen, Alhwaimel, Kuang, & Waine, ). Different methods have been used, including (a) directly concatenating various sensor data (Viscarra Rossel, Walvoort, McBratney, Janik, & Skjemstad, ), (b) converting sensor data using principal component analysis (PCA) and then concatenating principal components (PCs) (Ji et al, ), (c) using outer product analysis (OPA) to fuse different spectra (Terra, Viscarra Rossel, & Demattê, ; Xu, Chen, et al, ), (d) different sensors used as fixed effects and random effects respectively (Cardelli et al, ; Wang et al, ) and (e) model averaging to combine model results developed from individual sensors (O'Rourke, Minasny, Holden, & McBratney, ; O'Rourke, Stockmann, et al, ; Terra et al, ; Xu, Chen, et al, ; Xu, Zhao, et al, ).…”