The behaviour of traditional roofs affects issues relating to sustainability, zero-carbon targets, and Urban Heat Island (UHI) effect. This paper discusses an innovative approach towards understanding the behaviour of porous, and other types, of roofs in Malta in relation to temperature and moisture characteristics, and to project this behaviour onto a changing climate, predicted to be hotter and drier. The new methodology is being trialled on four roof types, on historic buildings, the innovation being the use of data from co-temporal Earth Observations (EO) and Unmanned Aerial Vehicles (UAVs), in conjunction with in-situ data. This research is helping to develop a new application for Remote Sensing in Cultural Heritage; results should enable recommendations for sustainable use of traditional roof-building techniques. The initial results show that the traditional roof has different (reflective and emissive) properties from the hybrid roof, that are being detected from space, complemented with UAV, hand-held thermal camera and in-situ measurements. These results are preliminary; satellite images for spring/early summer and mid-summer and the corresponding UAV images are expected to provide more conclusive information. These promising results should enable the proof-of-concept to progress onto a larger number and greater variety of roof types, even in other Mediterranean countries.