This research delves into the dynamics of a retrial queueing system featuring heterogeneous servers with intermittent availability, incorporating feedback and working vacation mechanisms. Employing a matrix geometric approach, this study establishes the steady-state probability distribution for the queue size in this complex heterogeneous service model. Additionally, a range of system performance metrics is developed, alongside the formulation of a cost function to evaluate decision variable optimization within the service system. The Artificial Bee Colony (ABC) optimization algorithm is harnessed to determine service rates that minimize the overall cost. This work includes numerical examples and sensitivity analyses to validate the model's effectiveness. Also, a comparison between the numerical findings and the neuro-fuzzy results has been examined by the adaptive neuro fuzzy interface system (ANFIS).