The I-patch is a multi-sided surface representation, defined as a combination of implicit ribbon and bounding surfaces, whose pairwise intersections determine the natural boundaries of the patch. Our goal is to show how a collection of smoothly connected Ipatches can be used to approximate triangular meshes. We start from a coarse, user-defined vertex graph which specifies an initial subdivision of the surface. Based on this, we create ribbons that tightly fit the mesh along its edges in both positional and tangential sense, then we optimize the free parameters of the patch to better approximate the interior. If the surfaces are not sufficiently accurate, the network needs to be refined; here we exploit that the I-patch construction naturally supports T-nodes. We also describe a normalization method that nicely approximates the Euclidean distance field, and can be efficiently evaluated. The capabilities and limitations of the approach are analyzed through several examples.