WHAT'S KNOWN ON THIS SUBJECT: Jaundiced newborns without additional risk factors rarely develop kernicterus if the total serum bilirubin is ,25 mg/dL. Measuring the bilirubin/albumin ratio might improve risk assessment, but the relationships of both indicators to advancing stages of neurotoxicity are poorly documented.WHAT THIS STUDY ADDS: Both total serum bilirubin and bilirubin/albumin ratio are strong predictors of advancing stages of acute and post-treatment auditory and neurologic impairment. However, bilirubin/albumin ratio, adjusted to the same sensitivity, does not improve prediction over total serum bilirubin alone. abstract BACKGROUND AND OBJECTIVE: Bilirubin/albumin ratio (B/A) may provide a better estimate of free bilirubin than total serum bilirubin (TSB), thus improving identification of newborns at risk for bilirubin encephalopathy. The objective of the study was to identify thresholds and compare specificities of TSB and B/A in detecting patients with acute and posttreatment auditory and neurologic impairment.
METHODS:A total of 193 term/near-term infants, admitted for severe jaundice to Cairo University Children's Hospital, were evaluated for neurologic status and auditory impairment (automated auditory brainstem response), both at admission and posttreatment by investigators blinded to laboratory results. The relationships of TSB and B/A to advancing stages of neurotoxicity were compared by using receiver operating characteristic curves.RESULTS: TSB and B/A ranged from 17 to 61 mg/dL and 5.4 to 21.0 mg/g, respectively; 58 (30%) of 193 subjects developed acute bilirubin encephalopathy, leading to kernicterus in 35 infants (13 lethal). Auditory impairment was identified in 86 (49%) of 173 infants at admission and in 22 of 128 at follow-up. In the absence of clinical risk factors, no residual neurologic or hearing impairment occurred unless TSB exceeded 31 mg/dl. However, transient auditory impairment occurred at lower TSB and B/A (22.9 mg/dL and 5.7 mg/g, respectively). Intervention values of TSB and B/A set at high sensitivity to detect different stages of neurotoxicity had nearly the same specificity.
CONCLUSIONS: