Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Multi-channel speech enhancement has become an active area of research, demonstrating excellent performance in recovering desired speech signals from noisy environments. Recent approaches have increasingly focused on leveraging spectral information from multi-channel inputs, yielding promising results. In this study, we propose a novel feature integration network that not only captures spectral information but also refines it through shifted-window-based self-attention, enhancing the quality and precision of the feature extraction. Our network consists of blocks containing a full- and sub-band LSTM module for capturing spectral information, and a global–local attention fusion module for refining this information. The full- and sub-band LSTM module integrates both full-band and sub-band information through two LSTM layers, while the global–local attention fusion module learns global and local attention in a dual-branch architecture. To further enhance the feature integration, we fuse the outputs of these branches using a spatial attention module. The model is trained to predict the complex ratio mask (CRM), thereby improving the quality of the enhanced signal. We conducted an ablation study to assess the contribution of each module, with each showing a significant impact on performance. Additionally, our model was trained on the SPA-DNS dataset using a circular microphone array and the Libri-wham dataset with a linear microphone array, achieving competitive results compared to state-of-the-art models.
Multi-channel speech enhancement has become an active area of research, demonstrating excellent performance in recovering desired speech signals from noisy environments. Recent approaches have increasingly focused on leveraging spectral information from multi-channel inputs, yielding promising results. In this study, we propose a novel feature integration network that not only captures spectral information but also refines it through shifted-window-based self-attention, enhancing the quality and precision of the feature extraction. Our network consists of blocks containing a full- and sub-band LSTM module for capturing spectral information, and a global–local attention fusion module for refining this information. The full- and sub-band LSTM module integrates both full-band and sub-band information through two LSTM layers, while the global–local attention fusion module learns global and local attention in a dual-branch architecture. To further enhance the feature integration, we fuse the outputs of these branches using a spatial attention module. The model is trained to predict the complex ratio mask (CRM), thereby improving the quality of the enhanced signal. We conducted an ablation study to assess the contribution of each module, with each showing a significant impact on performance. Additionally, our model was trained on the SPA-DNS dataset using a circular microphone array and the Libri-wham dataset with a linear microphone array, achieving competitive results compared to state-of-the-art models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.