2020
DOI: 10.2139/ssrn.3699161
|View full text |Cite
|
Sign up to set email alerts
|

Multi-State Health Transition Modeling Using Neural Networks

Abstract: This article proposes a new model that combines a neural network with a generalized linear model (GLM) to estimate and predict health transition intensities. The model allows for socioeconomic and lifestyle factors to impact the health transition processes, and captures linear and nonlinear relationships. A key innovation is that the model features transfer learning between different transition rates. It autonomously finds the relationships between factors and the links between the transition processes. We app… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?