PurposeThe purpose of this paper is to design a ring network topology system and alter it into a series–parallel type framework. Then, reliability of the framework is analysed and authors also discussed the signature to analyse the most sensitive component.Design/methodology/approachThis study presents a ring-shaped network system where this type of topology forms a single continuous pathway for signals through every node. In this study, a system consists of ring network topology is generalized in the series–parallel mixed configuration and reliability characteristics are evaluated with the assistance of universal generating function (UGF) technique. The system consists of wires, repeaters, components or computers and power supply. The wires and repeaters are in series, so, if they fail the whole system will fail and the signals will not go further. The components or computers are connected to each other in parallel configuration. So, the whole system will not fail until the last computer is working. There is also a two-unit power supply system which has one unit in a standby mode. On the failure of first power supply, the second one will start functioning and the whole system fails on the failure of both power supply.FindingsBy the assistance of UGF technique, reliability function of the framework is evaluated. Also, Barlow–Proschan index and expected lifetime for the designed system is estimated by considering a numerical example for the general ring-shaped network system.Originality/valueUGF technique is very effective for estimating the reliability of a system with complex structure and having two performance rates, i.e. completely failed and perfectly working, or more than two, i.e. multi-state performance. This technique enables to estimate every components contribution in the working and failure of the whole system. A general model of ring-shaped network system is taken and generalized algorithm is drawn for the system. Then a particular numerical example is solved for illustrating the use of this technique.