2021
DOI: 10.36227/techrxiv.14642577.v2
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Multi-Step Predictions for Adaptive Sampling using Proximal ADMM

Abstract: <p>The paper presents a novel approach by using multi- step predictions to address the adaptive sampling problem in a resources and obstacles constrained mobile robotic sensor network to efficiently monitor environmental spatial phenomena. It is first proposed to employ the Gaussian process (GP) to represent the spatial field, which can then be used to predict the field at unmeasured locations. The adaptive sampling problem aims to drive the mobile sensors to optimally navigate the environment where the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?