2022
DOI: 10.48550/arxiv.2203.01587
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Multi-Tailed Vision Transformer for Efficient Inference

Abstract: Recently, Vision Transformer (ViT) has achieved promising performance in image recognition and gradually serves as a powerful backbone in various vision tasks. To satisfy the sequential input of Transformer, the tail of ViT first splits each image into a sequence of visual tokens with a fixed length. Then the following self-attention layers constructs the global relationship between tokens to produce useful representation for the downstream tasks. Empirically, representing the image with more tokens leads to b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?