Modulating the photophysical properties of photosensitizers is an effective approach to enhance singlet oxygen generation for photodynamic therapy. Porphyrins are the most widely used photosensitizers due to their biocompatible nature. Aggregation‐induced emission (AIE) characteristics of photosensitizers are one of the advantageous features that will enhance fluorescence, intersystem crossing, and efficient triplet state generation. Herein, we demonstrate two glycosylated porphyrin photosensitizers, ZnGEPOH (with two ethynyl groups) and ZnGPOH (without two ethynyl groups), which exhibit AIE. Detailed studies revealed that ZnGEPOH exhibited a two‐fold increase in singlet oxygen production than ZnGPOH due to AIE. The photo‐cytotoxicity of ZnGPOH and ZnGEPOH were evaluated using cancer cell lines A549 and AGS. ZnGEPOH shows superior photo‐cytotoxicity with cell viability of 21% and 19% for A549 and AGS, respectively, at 250 μg/mL concentration in 48 h. Moreover, ZnGEPOH exhibits minimal photo‐cytotoxicity towards the control cell line HEK 293.