2023
DOI: 10.3390/app14010300
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Task Aspect-Based Sentiment: A Hybrid Sampling and Stance Detection Approach

Samer Abdulateef Waheeb

Abstract: This paper discusses the challenges associated with a class imbalance in medical data and the limitations of current approaches, such as machine multi-task learning (MMTL), in addressing these challenges. The proposed solution involves a novel hybrid data sampling method that combines SMOTE, a meta-weigher with a meta-based self-training method (MMS), and one-sided selection (OSS) to balance the distribution of classes. The method also utilizes condensed nearest neighbors (CNN) to remove noisy majority example… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 59 publications
0
0
0
Order By: Relevance