In 2017, Lienert and Tumulka proved Born's rule on arbitrary Cauchy surfaces in Minkowski space-time assuming Born's rule and a corresponding collapse rule on horizontal surfaces relative to a fixed Lorentz frame, as well as a given unitary time evolution between any two Cauchy surfaces. Here, we prove Born's rule on arbitrary Cauchy surfaces from a different, but equally reasonable, set of assumptions. The conclusion is that if detectors are placed along any Cauchy surface Σ, then the observed particle configuration on Σ has distribution |Ψ Σ | 2 , suitably understood. The main different assumption is that the Born and collapse rules hold on any spacelike hyperplane, i.e., at any time coordinate in any Lorentz frame. Heuristically, this follows if the dynamics of the detectors is Lorentz invariant. In addition, we assume, as did Lienert and Tumulka, that there is no interaction faster than light and that there is no propagation faster than light.