This paper presents a multiple vehicle recognition algorithm based on radar and vision sensor fusion for lane change assistance. To determine whether the lane change is possible, it is necessary to recognize not only a primary vehicle which is located inlane, but also other adjacent vehicles in the left and/or right lanes. With the given sensor configuration, two challenging problems are considered. One is that the guardrail detected by the front radar might be recognized as a left or right vehicle due to its genetic characteristics. This problem can be solved by a guardrail recognition algorithm based on motion and shape attributes. The other problem is that the recognition of rear vehicles in the left or right lanes might be wrong, especially on curved roads due to the low accuracy of the lateral position measured by rear radars, as well as due to a lack of knowledge of road curvature in the backward direction. In order to solve this problem, it is proposed that the road curvature measured by the front vision sensor is used to derive the road curvature toward the rear direction. Finally, the proposed algorithm for multiple vehicle recognition is validated via field test data on real roads.