2017
DOI: 10.1016/j.neucom.2017.04.021
|View full text |Cite
|
Sign up to set email alerts
|

Multi-view based unlabeled data selection using feature transformation methods for semiboost learning

Abstract: SemiBoost [23] is a boosting framework for semi-supervised learning, in which unlabeled data as well as labeled data both contribute to learning. Various strategies have been proposed in the literature to perform the task of selecting useful unlabeled data in SemiBoost. Recently, a multi-view based strategy was proposed in [20], in which the feature set of the data is decomposed into

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?