Non-destructive testing of metallic objects that may contain embedded defects of different sizes is an important application in many industrial branches for quality control. Most of these techniques allow defect detection and its approximate localization, but very few give enough information for its 3D reconstruction. Here we present a hybrid laser – transducer system that combines remote laser-generated ultrasound excitation and non-contact ultrasonic transducer detection. This fully non-contact method gives access to separating scan areas on different object’s faces and defect details from different angles/perspectives can be analysed. This hybrid system can analyse the whole object’s volume data and allow a 3D reconstruction image of the embedded defects. As a novelty for the signal processing improvement, we use a 2D apodization window filtering technique, applied along with the synthetic aperture focusing algorithm in order to remove the undesired effects of side lobes and wide-angle reflections of propagating ultrasound waves, thus, enhancing the resulting 3D image of the defect. We provide both qualitative and quantitative volumetric results with high accuracy and resolution compared with conventional techniques.