The dynamic weapon target assignment (DWTA) problem is of great significance in modern air combat. However, DWTA is a highly complex constrained multi-objective combinatorial optimization problem. An improved elitist non-dominated sorting genetic algorithm-II (NSGA-II) called the non-dominated shuffled frog leaping algorithm (NSFLA) is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints. In NSFLA, the shuffled frog leaping algorithm (SFLA) is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm (GA), displaying low optimization speed and heterogeneous space search defects. Two improvements have also been raised to promote the internal optimization performance of SFLA. Firstly, the local evolution scheme, a novel crossover mechanism, ensures that each individual participates in updating instead of only the worst ones, which can expand the diversity of the population. Secondly, a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search. Finally, the scheme is verified in various air combat scenarios. The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency, especially in many aircraft and the dynamic air combat environment.