2008 IEEE International Conference on Automation, Quality and Testing, Robotics 2008
DOI: 10.1109/aqtr.2008.4588943
|View full text |Cite
|
Sign up to set email alerts
|

Multiagent Decision Support Systems based on Supervised Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2009
2009
2019
2019

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 9 publications
0
2
0
2
Order By: Relevance
“…Query input: the way in which users formulate requests towards the SPA. Requests can either be predefined formal prompts that users must know to trigger a desired action [37], natural language requests [31] or accumulations of sensor data which, from a user perspective, is often collected unconsciously [9].…”
Section: Spa Design Characteristicsmentioning
confidence: 99%
“…Query input: the way in which users formulate requests towards the SPA. Requests can either be predefined formal prompts that users must know to trigger a desired action [37], natural language requests [31] or accumulations of sensor data which, from a user perspective, is often collected unconsciously [9].…”
Section: Spa Design Characteristicsmentioning
confidence: 99%
“…A Figura 1 apresenta a arquitetura em alto-nível do sistema. Em concordância com trabalhos presentes na literatura ( [1], [4] e [11]), a arquitetura apresenta um agente especializado em recepcionar dados do usuário e comunicar aos agentes do SMA as requisições realizadas pelo usuário durante a interação com o SAD. Tal agente é chamado Agente Comunicador.…”
Section: Modelo Propostounclassified
“…Não se tem garantias da otimalidade das soluções concebidas. 4. Erros dispendiosos podem se repetir pois não é possível aprender com falhas de experiências anteriores [5].…”
Section: Introductionunclassified
“…Several multiagent systems for knowledge discovery have recently been proposed [2,10,12]. Multiple agents acting on different environments extract a local knowledge and communicate this information back to the central administrator agent to form a knowledge pool about the domain.…”
Section: Introductionmentioning
confidence: 99%