2015
DOI: 10.1016/j.phpro.2015.08.269
|View full text |Cite
|
Sign up to set email alerts
|

Multibeam Holographic Formation of the Polarization Photonic Structures in Polymer-dispersed Liquid Crystals

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2016
2016
2019
2019

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 2 publications
0
3
0
Order By: Relevance
“…Since the changes in the dielectric permittivity tensor of the PSLC (PDLC) sample, caused by the recording processes, are small relative to the unperturbed state [31,32,33,34], it is possible to present the resulting distribution of perturbed dielectric permittivity tensor in the form:for PSLC trueε^(boldnormalr,t)=false(1sans-serifρfalse)[εptrueI^+truem=o,eΔsans-serifε^pm(boldnormalr,t)]+sans-serifρ[sans-serifε^lc+truem=o,eΔsans-serifε^lcm(boldnormalr,t)+Δsans-serifε^lcpolfalse(boldnormalr,tfalse)], for PDLC trueε^(boldnormalr,t)=false(1sans-serifρfalse)[ε…”
Section: Theoretical Modelmentioning
confidence: 99%
See 2 more Smart Citations
“…Since the changes in the dielectric permittivity tensor of the PSLC (PDLC) sample, caused by the recording processes, are small relative to the unperturbed state [31,32,33,34], it is possible to present the resulting distribution of perturbed dielectric permittivity tensor in the form:for PSLC trueε^(boldnormalr,t)=false(1sans-serifρfalse)[εptrueI^+truem=o,eΔsans-serifε^pm(boldnormalr,t)]+sans-serifρ[sans-serifε^lc+truem=o,eΔsans-serifε^lcm(boldnormalr,t)+Δsans-serifε^lcpolfalse(boldnormalr,tfalse)], for PDLC trueε^(boldnormalr,t)=false(1sans-serifρfalse)[ε…”
Section: Theoretical Modelmentioning
confidence: 99%
“…Changing the phase difference between them will change the polarization characteristics of the total light wave. To describe the polarization characteristics of the total optical field, similarly to [32,33,34], the Jones formalism should be applied:Jjmfalse(boldr,tfalse)=Ajmfalse(boldrfalse)expsans-serifα(boldnormalr,t)(Nrjmboldnormalr)expiφjmfalse(boldnormalrfalse)MjmRjmDjm, where Djm–Jones vectors of recording arbitrarily polarized waves in their own polarization bases; Rjm=[cosfalse(γjmfalse)sinfalse(γjmfalse)sinfalse(γjmfalse)cosfalse(γjmfalse)], Mjm=<...>…”
Section: Theoretical Modelmentioning
confidence: 99%
See 1 more Smart Citation