2023
DOI: 10.1155/2023/8256907
|View full text |Cite
|
Sign up to set email alerts
|

Multibranch Adaptive Fusion Graph Convolutional Network for Traffic Flow Prediction

Abstract: Urban road networks have complex spatial and temporal correlations, driving a surge of research interest in spatial-temporal traffic flow prediction. However, prior approaches often overlook the temporal-scale differentiation of spatial-temporal features, limiting their ability to extract complex structural information. In this work, we design the multibranch adaptive fusion graph convolutional network (MBAF-GCN) that explicitly exploits the prior spatial-temporal characteristics at different temporal scales, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 34 publications
0
0
0
Order By: Relevance