Transmission on data-oriented radio interfaces of cellular networks has been primarily designed for unicast applications. Nevertheless, unicast may not optimize the resource usage when the same content has to be transmitted to several users in the same cell. In this context, multicast seems to be an efficient means to convey data. In this paper, we develop an analytical model that allows the computation of the mean bitrate for both multicast and multiple-unicast transmission schemes. Furthermore, we propose a multicast transmission scheme called the equal-bitrate (EB) algorithm that allocates bandwidth to mobiles according to their instantaneous channel quality. We compare it to adaptations of the well-known max-signal-to-noise ratio and round robin to multicast. We propose to group users into clusters. The clustering method combines multicast and unicast transmission schemes according to the user's average channel conditions. We use the analytical model to evaluate the proposed solutions. We compare the resulting performance against pure multicast and multiple-unicast approaches. We show that the EB algorithm offers a good trade-off between throughput and fairness. Also, we show that mixed clustering achieves good performance compared to conventional clustering methods.