In this paper, we investigate the benefits of a spatiotemporal approach for reconstruction of image sequences. In the proposed approach, we introduce a temporal prior in the form of motion compensation to account for the statistical correlations among the frames in a sequence, and reconstruct all the frames collectively as a single function of space and time. The reconstruction algorithm is derived based on the maximum a posteriori estimate, for which the one-step late expectation-maximization algorithm is used. We demonstrated the method in our experiments using simulated single photon emission computed tomography (SPECT) cardiac perfusion images. The four-dimensional (4D) gated mathematical cardiac-torso phantom was used for simulation of gated SPECT perfusion imaging with Tc-99m-sestamibi. In addition to bias-variance analysis and time activity curves, we also used a channelized Hotelling observer to evaluate the detectability of perfusion defects in the reconstructed images. Our experimental results demonstrated that the incorporation of temporal regularization into image reconstruction could significantly improve the accuracy of cardiac images without causing any significant cross-frame blurring that may arise from the cardiac motion. This could lead to not only improved detection of perfusion defects, but also improved reconstruction of the heart wall which is important for functional assessment of the myocardium.