Multicharged carbon ions are generated by using a laser-assisted spark-discharge ion source. A Q-switched Nd:YAG laser pulse (1064 nm, 7 ns, ≤ 4.5 × 10 9 W/cm 2 ) focused onto the surface of a glassy carbon target results in its ablation. The spark-discharge (∼1.2 J energy, ∼1 μs duration) is initiated along the direction of the plume propagation between the target surface and a grounded mesh that is parallel to the target surface. Ions emitted from the laser-spark plasma are detected by their time-of-flight using a Faraday cup. The ion energy-to-charge ratio is analyzed by a three-mesh retarding field analyzer. In one set of experiments, the laser plasma is generated by target ablation using a 50 mJ laser pulse. In another set of experiments, ∼1.2 J spark-discharge energy is coupled to the expanding plasma to increase the plasma density and temperature that results in the generation of carbon multicharged ions up to C 6+ . A delay-generator is used to control the time delay between the laser pulse and the thyratron trigger. Ion generation from a laser pulse when a high DC voltage is applied to the target is compared to that when a spark-discharge with an equivalent pulsed voltage is applied to the target. The laser-coupled spark-discharge (7 kV peak voltage, 810 A peak current) increases the maximum detected ion charge state from C 4+ to C 6+ , accompanied by an increase in the ion yield by a factor of ∼6 compared to applying 7.0 kV DC voltage to the target.Published under license by AIP Publishing. https://doi.