2017 1st International Conference on Informatics and Computational Sciences (ICICoS) 2017
DOI: 10.1109/icicos.2017.8276355
|View full text |Cite
|
Sign up to set email alerts
|

Multiclass classification of cancer based on microarray data using extreme learning machine

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2018
2018
2021
2021

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 20 publications
0
1
0
2
Order By: Relevance
“…It is a version of the Relief algorithm and developed for multi-class datasets. It gives better results in the noisy and missing data [24]. The main objective of this method is to rate each feature according to its ability to distinguish nearest samples.…”
Section: Relief-fmentioning
confidence: 99%
“…It is a version of the Relief algorithm and developed for multi-class datasets. It gives better results in the noisy and missing data [24]. The main objective of this method is to rate each feature according to its ability to distinguish nearest samples.…”
Section: Relief-fmentioning
confidence: 99%
“…Di samping algoritma SVM, algoritma klasifikasi lain yang juga memberikan hasil yang baik dalam permasalahan klasifikasi kanker adalah Extreme Learning Machine (ELM) [6] [7] dan k-Nearest Neighbor (kNN) [8] [9]. ELM adalah algoritma pembelajaran untuk single hidden layer feedforward network yang lebih baik dari algoritma gradient descent learning karena memerlukan waktu pelatihan yang lebih singkat, jumlah parameter pelatihan yang lebih sedikit dan kemampuan generalisasi yang lebih baik [10] [11].…”
Section: Pendahuluanunclassified
“…Untuk kasus non-linearly separable data, maka data akan dipetakan terlebih dahulu ke dimensi yang lebih tinggi menggunakan non-linear mapping. Nonlinear mapping ϕ(X 1 ) dapat diterapkan menggunakan fungsi kernel seperti persamaan (7). Beberapa pilihan fungsi kernel yang dapat digunakan antara lain linear, Gaussian atau radial basis function.…”
Section: Support Vector Machineunclassified