As a physical driver of ecosystem functioning, it is not surprising that climate influences seabird demography and population dynamics, generally by affecting food availability. However, if we zoom in ecologically, seabirds are in fact very heterogeneous, ranging in size from very small to very large species (with a difference of more than two orders of magnitude in body weight), from planktivorous forms to predators of large fish and squid, from benthic to pelagic, from species with small foraging ranges to species feeding throughout the whole circumpolar region, and from resident species (at a spatial mesoscale) to trans-equatorial migrating seabirds that travel large distances across several oceanographic systems. Due to this high variability and the difficulty in obtaining direct reliable estimates of long-term food availability, global climatic indices have been extensively used in studying seabird demography and population dynamics. However, the use made by researchers of these indices has certain conceptual and methodological pitfalls, which I shall address in this review. Other factors, such as anthropogenic impacts (including oil-spills and interaction with fisheries), may further alter or confound the association between climate and seabird demography. These pitfalls and environmental noise, together with the inability to incorporate resilience, may bias our predictions regarding the future impact of global warming on seabirds, many of which have vulnerable populations.Keywords: predictive models, resilience, methodological bias, evolution, global change, climate, seabirds
HISTORICAL BACKGROUNDA search performed in June 2014 using the words "climate & seabird" in the ISI Web of Science resulted in 946 items. Even though some of those items dealt with other marine organisms or were focused on some related issues (such as oceanographic processes), that result represents a large number of scientific contributions on the topic of how climate may influence seabird ecology. The influence of climate on marine organisms has been extensively studied in seabirds because, compared to most other species (except some marine mammals such as seals and sealions), their demography and population dynamics can be easily monitored in breeding colonies.Up to the 90s, the changes in demographic parameters and population size in seabirds were explored mostly in relation to intrinsic features of the colonies such as their size or the presence of predators (Hunt et al., 1986). The effects of climate (mostly in the form of oceanographic indices) on seabird ecology were seldom analyzed in those years (Myres, 1979), and research efforts were addressed mostly to determining the distribution of seabirds at sea (Abrams, 1985). The influence of oceanographic features was outlined especially when extreme and anomalous events occurred (such as cyclones or El Niño-Southern Oscillation (ENSO) years (e.g., Blomqvist and Peterz, 1984;Graybill and Hodder, 1985), whereas some pioneering studies dealt with the relationship between climatic ev...