Multiple diseases are at some point associated with altered endothelial
function, and endothelial dysfunction (ED) contributes to their pathophysiology.
Biochemical changes of the dysfunctional endothelium are linked to
various cellular organelles, including the mitochondria, endoplasmic
reticulum, and nucleus, so organelle-specific insight is needed for
better understanding of endothelial pathobiology. Raman imaging, which
combines chemical specificity with microscopic resolution, has proved
to be useful in detecting biochemical changes in ED at the cellular
level. However, the detection of spectroscopic markers associated
with specific cell organelles, while desirable, cannot easily be achieved
by Raman imaging without labeling. This critical review summarizes
the current advances in Raman-based analysis of ED, with a focus on
a new approach involving molecular Raman reporters that could facilitate
the study of biochemical changes in cellular organelles. Finally,
imaging techniques based on both conventional spontaneous Raman scattering
and the emerging technique of stimulated Raman scattering are discussed.