For the given bipartite graphs $G_1,G_2,\ldots,G_t$, the multicolor bipartite
Ramsey number $BR(G_1,G_2,\ldots,G_t)$ is the smallest positive integer $b$
such that any $t$-edge-coloring of $K_{b,b}$ contains a monochromatic subgraph
isomorphic to $G_i$, colored with the $i$th color for some $1\leq i\leq t$. We
compute the exact values of the bipartite Ramsey numbers $BR(C_8,C_{2n})$ for
$n\geq2$.