Abstract. We investigate the universality aspects of the four-dimensional random-field Ising model (RFIM) using numerical simulations at zero temperature. We consider two different, in terms of the field distribution, versions of the model, namely a Gaussian RFIM and an equal-weight trimodal RFIM. By implementing a computational approach that maps the ground-state of the system to the maximum-flow optimization problem of a network, we employ the most up-to-date version of the push-relabel algorithm and simulate large ensembles of disorder realizations of both models for a broad range of random-field values and system sizes. Using as finite-size measures the sample-to-sample fluctuations of the order parameter of the system, we propose, for both types of distributions, estimates of the critical field hc and the critical exponent ν of the correlation length, the latter suggesting that the two models in four dimensions share the same universality class.
PACS