The monitoring and control of renewable energy sources (RESs) based on DC (Direct Current) microgrids (DC MG) are gaining much consideration at this time. In comparison with the isolated individual control of converters in a microgrid, DC microgrids provide better voltage regulation and harmonized energy generation/consumption. To address the inherent vulnerability of communication links, robust methods have been proposed that improve the resilience of communication-based control. However, the failure of the communication links in microgrid control layers remains a considerable issue that may lead to one or more nodes being disconnected and operating as a communication island. Such types of communication islanding may cause the unpredictable behavior of the system and further destabilization may lead to a cascaded failure. This paper proposes a fast algorithm to detect and evaluate network connectivity based on the information stored at every node in the form of a look-up table. The control structure has been modified under communication islanding, and a communication connectivity observer is used at every node to detect and address power flow issues under communication islanding. The proposed method has been verified through mathematical analysis, simulation, and experimental results.