2010
DOI: 10.1134/s000143461005007x
|View full text |Cite
|
Sign up to set email alerts
|

Multidimensional integral operators with homogeneous kernels of compact type and multiplicatively weakly oscillating coefficients

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2014
2014
2021
2021

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 5 publications
0
3
0
1
Order By: Relevance
“…The following theorem is a generalization of some results obtained for operators with homogeneous kernels (see [1], [3]). Theorem 1.…”
Section: Boundedness Theorem For Operators With Ah Kernels In Weighmentioning
confidence: 69%
See 2 more Smart Citations
“…The following theorem is a generalization of some results obtained for operators with homogeneous kernels (see [1], [3]). Theorem 1.…”
Section: Boundedness Theorem For Operators With Ah Kernels In Weighmentioning
confidence: 69%
“…In their papers assumptions of invariance under diagonal action of group SO(n) were imposed and considerably used in addition to homogeneity conditions. New broad class of operators with kernels of compact type including the set of SO(n)-invariant kernels was introduced and investigated in [3]. In [4] the results of [3] on boundedness and Fredholm property are expanded to the case of operators with anisotropically homogeneous kernels.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Кроме условий однородности в данных работах на ядра накладывались и существенно использовались условия инвариантности относительно диагонального действия группы ортогональных преобразований SO(n). В [3,4] рассматривались классы ядер компактного и сингулярного типа, включающие в себя SO(n)-инвариантные ядра, а также методами теории операторов локального [5] и билокального типа [6] исследовалась разрешимость операторов с однородными ядрами и переменными коэффициентами. Топологические свойства пространств обратимых и фредгольмовых операторов из этого класса изучались в [7].…”
unclassified